
Imagine a one dimensional box with impenetrable walls (potential infinite) at x=0 and x=a. The particle must be 
in the box since the walls are infinitely high, so the wave function 0ψ = unless 0 x a< < . Since the wave 
function must be continuous, it must therefore be zero also at the boundaries, 0x =  and x a= . These are called 
boundary conditions. Between the walls there is no force, zero potential energy, and so Schrodinger’s equation 
is 
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which we rewrite as 
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Now, we have to be able to solve this differential equation for ψ . This is a second order differential equation so 
there should be two linearly independent solutions. This is the most famous of all differential equations, called 
the harmonic oscillator equation. What are its solutions? Ask yourself what function, when differentiated twice 
gives itself back but with a minus sign? It must be either a sine or a cosine: 
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where A and B can be any constants. The most general solution of the equation is  
 

( ) sin cosy x A x B x= + . 

 
So, for our Schrodinger equation, the only minor complication is the k. You should be able to convince yourself 
that the general solution for the wave function is ( ) sin( ) cos( )x A kx B kxψ = + . Now, we must find the constants 

A and B.  We use the boundary condition that (0) 0ψ =  to determine that B=0 because ( )cos 0 1,=  i.e. the wave 

function could not be zero at the origin unless B=0. We will worry about what A is later. So now the wave 
function is ( ) sin( )x A kxψ = . Now, how are we going to satisfy the other boundary condition, namely that 

( ) 0aψ = ? What must be true is that sin( ) 0.ka =  But, the sine function is zero only if its argument is 
,2 ,3 ,4 ,π π π π K  So we can write 

 
( ) 0 1,2,3,a ka n nψ π= ⇒ = = K  

 

So, this second boundary condition places a condition on k. But 
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allowed which satisfy the boundary conditions; I will label these as nE : 
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So, for each nE  there is a corresponding wave function nψ  which will have an associated constant nA . So, 

finally, we need to get the constants nA  so that we can find the wave function of the nth state with no arbitrary 

constants. We do this using a procedure called normalization. The meaning of a wave function is that its square 
represents the probability distribution, that is 2( )x dxψ  is the probability that the particle is between x and x+dx. 
Since the probability of finding the particle anywhere between 0x =  and x a=  must be unity, that is 
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we can deduce nA  by evaluating the integral and solving. The integral is easily shown to be 
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= . Note that the coefficients nA  are independent of n which just means we 

didn’t need to subscript them in the first place; it just works out that way for this particular problem but in 
general the normalization coefficients will depend on the energy level. Finally we can write the wave function 

for the nth state whose energy is 
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The first three wave functions are plotted below. (Note that the point π  on the axis corresponds to x a= .) 
 

0 1 2 3 4πx/a

-0.8

-0.4

0

0.4

0.8

ψ

n=1
n=2
n=3

 
 
 
 
 
 



It is also instructive to plot 2
nψ . 
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