
Text S2. Newtonian and relativistic free-fall motion. 

Here we consider the radial motion of a particle of mass m due to the gravitational 

field of a uniform sphere of mass M and radius R. 

In the Newtonian framework, the change in gravitational potential energy of the 

particle from an initial position r0 to a final position r is given by 
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If the distance travelled by the particle is small compared to r0, that is, |r - r0|/r0 <<1, 

then 1/r is essentially given by 
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since higher-order terms involving (r - r0)/r0 are negligible. If the particle is initially 

near the surface of the sphere, that is, r0 ≈ R, then  

GM/r0
2 ≈ GM/R2 = g.            (B3) 

Substituting Eqs. (B2) and (B3) into Eq. (B1) reduces Eq. (B1) to approximately the 

change in gravitational potential energy of a particle in a uniform gravitational field 

    ∆U ≈ mgr- mgr0..            (B4) 

The Newtonian position and velocity of the particle at time t are therefore given by the 

well-known equations: 
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 In the special-relativistic framework, if |r - r0|/r0 <<1 and r0 ≈ R, Eqs. (B2) and (B3) 

reduce the change in gravitational potential energy of the particle to  
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Solution of the special-relativistic equation of motion with the force derived from the 

gravitational potential energy U(r) in Eq. (B7) yields [1-3] 
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for the position and velocity of the particle at time t. 

In the general-relativistic framework, the gravitational field outside the uniform 

sphere is described by the Schwarzschild metric [4] in terms of the Schwarzschild 

coordinates (ct, r, θ, φ) 
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where ds is the interval between neighboring events, τ is the proper time, and rs = 

2GM/c2 is the Schwarzschild radius. For purely radial motion [3,5] along the line φ 

=constant in the equatorial plane θ = π/2, the metric Eq. (B10) is simplified, with dφ = 

dθ = 0, to 
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and the geodesic equations are reduced to 
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The local velocity [4,6] of the particle, measured by a local observer who is at rest at a 

particular Schwarzschild radial coordinate and is next to the particle, is 

 
dt

dr

rc

GM

dt

dr

r

r
v s

1

2

1
2

11
−−








 −=






 −= .        (B14) 

The integral of Eq. (B12), which is given by 
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where k is a constant, and the integral of Eq. (B13), which is given by Eq. (B11), 

together with the initial condition v = v0 at r = r0, lead to the following expression for 

dr/dt: 
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If |r - r0|/r0 <<1 and r0 ≈ R, substituting Eqs. (B2) and (B3) into Eq. (B16) and 

integrating it with initial condition r = r0 at t = t0 yields the general-relativistic position 

of the particle at time t 
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In the limit of weak gravity (2gr/c2<<1 and 2gr0/c
2<<1), Eq. (B17) reduces to the 

special-relativistic Eq. (B8). In the limit of weak gravity and low speed (v/c<<1, 

v0/c<<1 and g(t – t0)/c<<1), Eq. (B17) reduces to the Newtonian Eq. (B5). 

Substituting Eqs. (B14), (B2), (B3) and (B17) sequentially into Eq. (B16) yields 

the general-relativistic velocity of the particle at time t, which is the same as the 

special-relativistic Eq. (B9). In the limit of low speed, Eq. (B9) reduces to the 

Newtonian Eq. (B6). 
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