Text S2. Newtonian and relativistic free-fall motion.

Here we consider the radial motion of a particlenalssm due to the gravitational
field of a uniform sphere of masdéand radiuR.

In the Newtonian framework, the change in grawtaai potential energy of the
particle from an initial positiong to a final positiorr is given by

AU :U(r)—U(rO):—GMm{%—%] (B1)

If the distance travelled by the particle is sntalinpared tao, that is,t - ro|/ro <<1,

then 1f is essentially given by
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since higher-order terms involving { ro)/ro are negligible. If the particle is initially
near the surface of the sphere, thatgs; R, then
GM/r¢® = GM/F? = g. (B3)
Substituting Egs. (B2) and (B3) into Eq. (B1) reduEes (B1) to approximately the
change in gravitational potential energy of a gétin a uniform gravitational field
AU = mgr- mgro.. (B4)
The Newtonian position and velocity of the partiatdimet are therefore given by the

well-known equations:

P, =vo(t—t0)—%g( ~t, ), (B5)



v=v, gt -t). (B6)
In the special-relativistic framework, if{rg|/ro <<1 and = R, Egs. (B2) and (B3)

reduce the change in gravitational potential enefghe particle to

AU = - GMm F_i}:mgr—mgrol (B7)
JiI=(ve)’ Lr ol y1-(v/c)?

Solution of the special-relativistic equation of tioa with the force derived from the

gravitational potential enerdy(r) in Eqg. (B7) yields [1-3]

r—ry, = —(02 / g)ln{%{(h %}e‘g(t’to)“ + (1—V—§jeg(t't°)’°}} : (B8)
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(1+ v, /C)e—g(t—to)/c + (1_\/0 /C)eg(t—to)/c

(B9)

for the position and velocity of the particle at time

In the general-relativistic framework, the gravitational field outsigeeuniform

sphere is described by the Schwarzschild metric [4] in terms oB¢hevarzschild

coordinatesdt, r, 6, @
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ds® =c’dr® =|1--= [cdt® - -r (dé? +sin 6U¢2), (B10)
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whereds is the interval between neighboring eventss the proper time, and, =
2GM/c? is the Schwarzschild radius. For purely radial motion [3,5] qalive line ¢

=constant in the equatorial plafe 7/2, the metric Eq. (B10) is simplified, withp=

dé=0,to
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ds? = c?dr? =[1- 15 |c2arz -9 (B11)
r (1-r./r)

and the geodesic equations are reduced to

=0, (B12)
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+l1-=s = | =] -|1-== s | — | =0. B13
cdr? ( rj(Zrzj(cdrj ( rj (Zrzj(cdrj (B13)

The local velocity [4,6] of the particle, measurgdablocal observer who is at rest at a

particular Schwarzschild radial coordinate andestrio the patrticle, is

-1 -1
v=[1-Is ﬂ{l— ZGZMJ ar (B14)
r dt cr dt

The integral of Eqg. (B12), which is given by

cdt _ (. T -
cT_k(l j (B15)
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wherek is a constant, and the integral of Eq. (B13), whglgiven by Eq. (B11),

together with the initial conditionm = vy atr =ro, lead to the following expression for

dr/dt;
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If |r - rolfro <<1 andro = R, substituting Egs. (B2) and (B3) into Eq. (B16) and

integrating it with initial conditiom =rg att =tpyields the general-relativistic position

of the particle at timé



c?(, 2gr AR =T
r—r, = —_Kl— Zoj 1—{—|:£1+ _Oje ¢+ (l——oje ¢ :|} . (B17)
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In the limit of weak gravity (gr/c’<<1 and Br¢/c’<<1), Eq. (B17) reduces to the
special-relativistic Eg. (B8). In the limit of weakravity and low speeadvic<<l,
Vo/c<<1 andg(t —tp)/c<<1), Eq. (B17) reduces to the Newtonian Eq. (B5).
Substituting Egs. (B14), (B2), (B3) and (B17) sedialy into Eq. (B16) yields
the general-relativistic velocity of the particlé tame t, which is the same as the
special-relativistic Eq. (B9). In the limit of lowpeed, Eq. (B9) reduces to the

Newtonian Eq. (B6).
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