Kinetic energy is

$$
K=E-m c^{2}=\sqrt{p^{2} c^{2}+m^{2} c^{4}}-m c^{2}=m c^{2}\left(\sqrt{1+\frac{p^{2} c^{2}}{m^{2} c^{4}}}-1\right)
$$

Linear momentum is

$$
p=m v / \sqrt{1-\beta^{2}}=m \beta c / \sqrt{1-\beta^{2}}
$$

where
$\beta=v / c$.
Simple algebra leads to
$K=m c^{2}\left(\left(1-\beta^{2}\right)^{-\frac{1}{2}}-1\right)$.
You now do a binomial expansion
$\left(1-\beta^{2}\right)^{-\frac{1}{2}} \approx 1+\frac{1}{1!}\left(-\frac{1}{2}\right)\left(-\beta^{2}\right)^{1}+\frac{1}{2!}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\beta^{2}\right)^{2}+\cdots=\frac{1}{2} \beta^{2}+\frac{3}{8} \beta^{4}+\cdots$
So,
$K \approx m c^{2}\left(\frac{1}{2} \beta^{2}+\frac{3}{8} \beta^{4}+\cdots\right)=\frac{1}{2} m c^{2} \beta^{2}+\frac{3}{8} m c^{2} \beta^{4}+\cdots$
The first term you recognize as

$$
K_{\text {classical }}=\frac{1}{2} m v^{2}
$$

and the second term is the lowest order correction
$\Delta K_{\text {classical }}=\frac{3}{8} m c^{2} \beta^{4}$,
so
$\frac{\Delta K_{\text {classical }}}{K_{\text {classical }}}=\frac{3}{4} \beta^{2}$
So, finally, for a 1% error,
$0.01=\frac{3}{4} \beta^{2} \Rightarrow \beta=0.116$
which is your $v / c<1 / 10$, I guess!

